Bell Numbers Modulo a Prime Number, Traces and Trinomials

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bell Numbers Modulo a Prime Number, Traces and Trinomials

Given a prime number p, we deduce from a formula of Barsky and Benzaghou and from a result of Coulter and Henderson on trinomials over finite fields, a simple necessary and sufficient condition β(n) = kβ(0) in Fpp in order to resolve the congruence B(n) ≡ k (mod p), where B(n) is the n-th Bell number, and k is any fixed integer. Several applications of the formula and of the condition are inclu...

متن کامل

The period of the Bell numbers modulo a prime

We discuss the numbers in the title, and in particular whether the minimum period of the Bell numbers modulo a prime p can be a proper divisor of Np = (pp − 1)/(p− 1). It is known that the period always divides Np. The period is shown to equal Np for most primes p below 180. The investigation leads to interesting new results about the possible prime factors of Np. For example, we show that if p...

متن کامل

About the Period of Bell Numbers modulo a Prime

Let p be a prime number. It is known that the order o(r) of a root r of the irreducible polynomial xp−x−1 over Fp divides g(p) = p p−1 p−1 . Samuel Wagstaff recently conjectured that o(r) = g(p) for any prime p. The main object of the paper is to give some subsets S of {1, . . . , g(p)} that do not contain o(r).

متن کامل

Aurifeuillian factorizations and the period of the Bell numbers modulo a prime

We show that the minimum period modulo p of the Bell exponential integers is (pp−1)/(p−1) for all primes p < 102 and several larger p. Our proof of this result requires the prime factorization of these periods. For some primes p the factoring is aided by an algebraic formula called an Aurifeuillian factorization. We explain how the coefficients of the factors in these formulas may be computed.

متن کامل

Set systems with I-intersections modulo a prime number

Let p be a prime and let L = {l1, l2, . . . , ls} and K = {k1, k2, . . . , kr} be two subsets of {0, 1, 2, . . . , p − 1} satisfying max lj < min ki. We will prove the following results: If F = {F1, F2, . . . , Fm} is a family of subsets of [n] = {1, 2, . . . , n} such that |Fi ∩ Fj | (mod p) ∈ L for every pair i 6= j and |Fi| (mod p) ∈ K for every 1 ≤ i ≤ m, then |F| ≤ ( n− 1 s ) + ( n− 1 s− 1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Electronic Journal of Combinatorics

سال: 2014

ISSN: 1077-8926

DOI: 10.37236/3532